\
0:00 Introduction
Classification\
7:01 Read, split and display images via PyTorch
24:50 Understand the flow of data to model, loss function and metrics
32:10 Write a structure for Pytorch Lightning Module class
41:52 Complete structure and train the model
class classification\
1:01:31 Custom dataset class for albumentation
1:16:15 XRay pretrained model in Pytorch Lightning
1:25:59 Train and validate the model
1:34:41 Use sampler and sheduler
1:46:54 Five fold cross validation
1:55:27 Get predictions for the test set
2:10:39 Submit file to the competetion
Classification\
2:12:00 Understand the data
2:16:42 Augmentation two images simultaneoulsy
2:24:35 Read two images simultaneoulsy
2:35:29 Create dual input model via TIMM
2:43:51 Create Lightning module and and convert BCELoss to focal loss
2:51:17 Train and validate the model
2:57:36 Create file for test set
Project\
3:04:04 Undertand the competetion
3:08:35 Code a Wining Solution
\
3:23:47 Read and plot Xray Images ( files)
3:40:26 Apply augmentation
3:51:35 Train model using pytorch lightning
4:04:22 Plot predicted masks
1 view
77
12
2 months ago 00:14:45 1
Как установить Stable Diffusion 3.5 Large и Turbo на компьютер? Пошаговая инструкция для Windows.
10 months ago 00:04:31 107
Группа Крови
11 months ago 01:59:26 1
Generative Adversarial Networks (GANs) with PyTorch
2 years ago 11:31:16 31
Master Transformers in 18 Hours with PyTorch TensorFlow HuggingFace | PART 1 | NLP Machine Learning
2 years ago 01:24:13 12
Debarta-v3-large model fine tuning for Kaggle Competition Feedback-Prize | NLP | Machine Learning
2 years ago 01:24:29 1
Deep Learning Tutorial for Beginners | Deep Learning 2022 | Deep Learning Explained | Simplilearn