Gauge Equivariant Convolutional Networks and the Icosahedral CNN
Ever wanted to do a convolution on a Klein Bottle? This paper defines CNNs over manifolds such that they are independent of which coordinate frame you choose. Amazingly, this then results in an efficient practical method to achieve state-of-the-art in several tasks!
Abstract:
The principle of equivariance to symmetry transformations enables a theoretically grounded approach to neural network architecture design. Equivariant networks have shown excellent performance and data efficiency on vision and medical imaging problems that exhibit symmetries. Here we show how this principle can be extended beyond global symmetries to local gauge transformations. This enables the development of a very general class of convolutional neural networks on manifolds that depend only on the intrinsic geometry, and which includes many popular methods from equivariant and geometric deep learning. We implement gauge equivariant CNNs for signals defined on the surface of the icos
1 view
20
4
2 years ago 00:21:50 1
Gauge Equivariant Convolutional Networks and the Icosahedral CNN