Новости из Мира ИИ и МЛ

✔️ DeepSeek-R1: прорыв в обучении ИИ рассуждению без человеческих примеров В журнале Nature опубликована работа о новой модели DeepSeek-R1, которая показывает, что LLM можно научить рассуждать без заранее подготовленных человеческих подсказок. Обычно для обучения таким системам используют «цепочки мыслей» — примеры пошагового рассуждения, составленные людьми. В DeepSeek-R1 от этого отказались: модель получает единственную награду — правильный конечный ответ. Для обучения применили алгоритм Group Relative Policy Optimization (GRPO). С его помощью базовая версия, названная DeepSeek-R1-Zero, постепенно сама научилась стратегиям проверки своих решений, рефлексии и смены подхода в зависимости от задачи. Иными словами, система начала вырабатывать собственные приёмы мышления, а не копировать человеческие. Результаты впечатляют. На математическом бенчмарке AIME точность выросла с 15% на старте до 78% после обучения, а с использованием механизма самопроверки — до 87%. Это выше среднего результата реальных участников. В задачах программирования и тестах по STEM-дисциплинам DeepSeek-R1 также обогнал сопоставимые по размеру модели и даже приблизился к гораздо более крупным системам. Более компактные версии, созданные методом дистилляции, сохраняют большую часть этих возможностей. Есть и недостатки: модель иногда пишет менее читаемые ответы, смешивает языки и пока что хуже работает в областях за пределами логики и математики. Но сам подход доказывает: ИИ способен учиться рассуждать без дорогой и трудоёмкой разметки данных. Этот прорыв открывает новый этап развития искусственного интеллекта. В будущем такие модели смогут самостоятельно находить эффективные пути решения задач, что особенно важно для науки, инженерии и образования. DeepSeek-R1 показывает, что «чистое подкрепление» может стать реальной альтернативой традиционному обучению с человеческими примерами. nature ✔️ OpenAI и Google показали рекордные результаты на ICPC Programming Contest Сразу две компании — OpenAI и Google — сообщили о победах на престижном международном соревновании по программированию ICPC. По данным инсайдов, их модели впервые показали уровень, сопоставимый с лучшими командами из людей, и даже превзошли их. Команда OpenAI заявила, что их модель решила 12 из 12 задач. Из них GPT-5 с первой попытки справился с 11 заданиями, а самое сложное было закрыто с помощью ещё не представленной reasoning-модели, которая также направляла решения по другим задачам. Это фактически идеальный результат, который ранее был недостижим даже для лучших университетских команд. Google выступил с собственным достижением: продвинутая версия Gemini 2.5 Deep Think решила 10 из 12 задач и, по заявлениям компании, справилась хотя бы с одной задачей, которую не смогла решить ни одна из команд людей. Это указывает на то, что новые архитектуры начинают находить нестандартные ходы, которые выходят за пределы привычного человеческого опыта. Если данные подтвердятся, ICPC 2025 войдёт в историю как момент, когда модели искусственного интеллекта впервые официально обошли лучшие команды программистов-людей в соревновании мирового уровня. Это событие может стать переломным: теперь ИИ рассматривается не просто как ассистент, а как полноценный участник и даже лидер в задачах, требующих абстрактного мышления, алгоритмического анализа и математической строгости. Такие достижения поднимают новые вопросы: стоит ли ИИ допускать к соревнованиям наравне с людьми, как использовать его для обучения программистов и где пройдёт граница между «человеческой» и «машинной» интеллектуальной работой. Одно ясно — в мире алгоритмов начинается новая эра, и ICPC стал её яркой отправной точкой. ✔️ IBM выпустила Granite-Docling-258M — «швейцарский нож» для работы с документами IBM представила granite-docling-258M — компактную модель, которая совмещает несколько функций: это не только конвертер документов, но и система для вопросно-ответных задач по содержимому файлов. Модель поддерживает несколько языков и распространяется под лицензией Apache 2.0. HF #news #ai #ml
Back to Top