#26. Сокращение размерности признакового пространства с помощью PCA | Машинное обучение

Устранение линейно зависимых признаков с помощью метода главных компонент (PCA – principal component analysis). Отличие и общность такого подхода от L2-регуляризатора. Инфо-сайт: Телеграм-канал: :
Back to Top