ROC Curves and Area Under the Curve (AUC) Explained
Transcript and screenshots:
Visualization:
Research paper:
An ROC curve is the most commonly used way to visualize the performance of a binary classifier, and AUC is (arguably) the best way to summarize its performance in a single number. As such, gaining a deep understanding of ROC curves and AUC is beneficial for data scientists, machine learning practitioners, and medical research
1 view
4601
1483
3 months ago 00:01:09 1
Sugon 8650Pro Curved Hot Air Gun
1 year ago 08:12:37 2
Python for Machine Learning full Course | Learn AI
2 years ago 01:30:04 1
Артамонов С.А.- Машинное обучение для решения прикладных задач - 7. Метрики качества классификации
2 years ago 00:24:33 1
ROC Curves в SPSS и Statistica - YouTube
2 years ago 00:24:27 1
Data Science пример задачи кредитного скоринга / Урок построения модели ML на python
3 years ago 00:13:47 1
#24. Метрики качества ранжирования. ROC-кривая | Машинное обучение
3 years ago 00:04:47 1
Пикник - Королевство кривых
3 years ago 00:09:11 1
ROC кривая. Что это такое и как ее построить?
3 years ago 00:03:40 3
Finding the Area Under the ROC Curve — Topic 91 of Machine Learning Foundations
3 years ago 00:10:17 20
The ROC Curve (Receiver-Operating Characteristic Curve) — Topic 84 of Machine Learning Foundations