What is the ultimate source of genetic variability
History of the concept
The concept of genetic drift was first introduced by one of the founders in the field of population genetics, Sewall Wright. His first use of the term “drift“ was in 1929, though at the time he was using it in the sense of a directed process of change, or natural selection. Random drift by means of sampling error came to be known as the “Sewall--Wright effect“, though he was never entirely comfortable to see his name given to it. Wright referred to all changes in allele frequency as either “steady drift“ (e.g. selection) or “random drift“ (e.g. sampling error). “Drift“ came to be adopted as a technical term in the stochastic sense exclusively. Today it is usually defined still more narrowly, in terms of sampling error, although this narrow definition is not universal. Wright wrote that the “restriction of “random drift“ or even “drift“ to only one component, the effects of accidents of sampling, tends to lead to confusion.“Sewall Wright considered the process of random genetic drift by means of sampling error equivalent to that by means of inbreeding, but later work has shown them to be distinct.
In the early days of the modern evolutionary synthesis, scientists were just beginning to blend the new science of population genetics with Charles Darwin’s theory of natural selection. Working within this new framework, Wright focused on the effects of inbreeding on small relatively isolated populations. He introduced the concept of an adaptive landscape in which phenomena such as cross breeding and genetic drift in small populations could push them away from adaptive peaks, which in turn allow natural selection to push them towards new adaptive peaks. Wright thought smaller populations were more suited for natural selection because “inbreeding was sufficiently intense to create new interaction systems through random drift but not intense enough to cause random nonadaptive fixation of genes.“
Wright’s views on the role of genetic drift in the evolutionary scheme were controversial almost from the very beginning. One of the most vociferous and influential critics was colleague Ronald Fisher. Fisher conceded genetic drift played some role in evolution, but an insignificant one. Fisher has been accused of misunderstanding Wright’s views because in his criticisms Fisher seemed to argue Wright had rejected selection almost entirely. To Fisher, viewing the process of evolution as a long, steady, adaptive progression was the only way to explain the ever-increasing complexity from simpler forms. But the debates have continued between the “gradualists“ and those who lean more toward the Wright model of evolution where selection and drift together play an important role.
In 1968, population geneticist Motoo Kimura rekindled the debate with his neutral theory of molecular evolution, which claims that most of the genetic changes are caused by genetic drift acting on neutral mutations.
The role of genetic drift by means of sampling error in evolution has been criticized by John H Gillespie and Will Provine, who argue that selection on linked sites is a more important stochastic force.
#Genetics #Allele #evolutionarySynthesis #DNA #gene #Homozygous #SewallWright #genes #Heterozygous #SewallWrightEffect #lawOfProbability #GeneticsExamQuestionsSolutions #genotype #GeneticTesting #Proteins #locus #GeneticsLecture #steadyDrift #Genetics101 #geneticCode #Inbreeding #chromosome #alleles #PopulationGenetics #geneticDrift #GeneticExamQuestionsSolutions #NaturalSelectionConceptsTheories #geneExpression #evolution #MolecularBiology #genomes #randomDrift