Машинное обучение. Вводная лекция. К.В. Воронцов, Школа анализа данных, Яндекс.
Вводная лекция. В первой половине лекции вводятся обозначения и понятия, которые будут использоваться на протяжении всего курса: объекты, признаки, функция потерь, предсказательная модель, минимизация эмпирического риска, обучающая выборка, тестовая выборка, переобучение, скользящий контроль. Во второй половине лекции приводятся примеры прикладных задач классификации, регрессии, ранжирования. В конце кратко обсуждаются некоторые вопросы методологии машинного обучения: особенности реальных данных, межотраслевой стандарт CRISP-DM, организация вычислительных экспериментов.
1 view
1163
343
2 years ago 00:30:34 18
Машинное обучение
3 years ago 01:00:24 16
17. Машинное обучение ПМИ: машинное обучение на графах
4 years ago 01:10:42 34
Квантовое машинное обучение
4 years ago 01:13:56 17
Машинное обучение 8
4 years ago 01:09:15 14
Машинное обучение 15
5 years ago 00:52:49 23
Машинное обучение. Энтропия.
8 years ago 00:10:05 131
#тренды | Машинное обучение
3 years ago 02:33:23 16
Машинное обучение. Регрессия
4 years ago 01:21:22 10
Машинное обучение 10
4 years ago 01:33:21 10
Машинное обучение 12
4 years ago 00:52:30 14
Машинное обучение в больших корпорациях
6 years ago 00:57:59 26
Занятие 1 | Машинное обучение
2 years ago 00:11:08 14
#13. Логистическая регрессия. Вероятностный взгляд на машинное обучение | Машинное обучение