Теорема Штайница. Семинар 1 // Александр Гайфуллин / ЛШСМ 2023
Каждому выпуклому многограннику в трехмерном пространстве соответствует граф, образованный его вершинами и ребрами. Какие конечные графы могут получаться таким образом? Ответ дает замечательная теорема Эрнста Штайница, доказанная им 100 лет назад — в 1922 году.
Теорема. Конечный граф можно реализовать как реберный граф выпуклого многогранника тогда и только тогда, когда он планарен, трехсвязен (то есть остается связным после удаления любых двух вершин) и имеет не менее 4 вершин.
Я расскажу о двух доказательствах этой теоремы. Первое использует технику напряжений на графах, восходящую к Джеймсу Клерку Максвеллу — тому самому, которому принадлежат уравнения электродинамики, распределение молекул газа по скоростям и много других важнейших достижений в физике. Собственно, получающееся доказательство теоремы Штайница тоже имеет физический характер. А именно, по данному планарному трехсвязному графу нужно построить его механическую модель, заменив вершины шариками, а ребра — пружинками. Эту модель нужно положить на плоскость, закрепив некоторые из вершин, отпустить и подождать, пока она придет в положение равновесия. Оказывается, что по известному положению равновесию искомый выпуклый многогранник уже легко восстанавливается. Ключевой результат в этом доказательстве связан с именем еще одного замечательного математика — Уильяма Томаса Татта, который, наряду со своими математическими достижениями, известен тем, что внес решающий вклад в расшифровку шифра Лоренца во время Второй мировой войны.
Второй подход сводит теорему Штайница к теореме Кёбе—Андреева—Тёрстона о реализации планарного графа в виде графа касаний окружностей на плоскости. Этот подход дает более сильный вариант теоремы Штайница: всякий планарный трехсвязный граф можно реализовать в виде реберного графа выпуклого многогранника, все ребра которого касаются сферы. Я расскажу красивое простое доказательство теоремы Кёбе—Андреева—Тёрстона, полученное в 2004 году А. И. Бобенко и Б. А. Шпрингборном.
Курс будет доступен для школьников. Полезно знать, что такое векторное произведение, и уметь дифференцировать.
Гайфуллин Александр Александрович — член-корреспондент РАН, доктор физико-математических наук.
Летняя школа «Современная математика», 20-27 июля 2023 г.
701 view
29
10
10 months ago 01:19:47 7
А.А. Гайфуллин. Теорема Штайница. Семинар 1
1 year ago 01:18:15 467
Теорема Штайница. Семинар 4 // Александр Гайфуллин / ЛШСМ 2023
1 year ago 01:19:35 437
Теорема Штайница. Семинар 3 // Александр Гайфуллин / ЛШСМ 2023
1 year ago 01:18:03 329
Теорема Штайница. Семинар 2 // Александр Гайфуллин / ЛШСМ 2023
1 year ago 01:19:46 854
Теорема Штайница. Семинар 1 // Александр Гайфуллин / ЛШСМ 2023