Quantitative genetics - how to solve problems

Quantitative genetics deals with the genetics of continuously varying characters. Rather than considering changes in the frequencies of specific alleles of genotypes, quantitative genetics seeks to “quantify“ changes in the frequency distribution of traits that cannot easily be placed in discrete phenotypic classes. The reason for the continuous variation is usually that the traits are polygenic (controlled by many genes) and there are environmental effects that alter the phenotypic state of each individual Consider two inbred strains that represent “extremes“ of a phenotypic distribution: high and low oil content in corn for example or long and short carrots. We will assume that the plants of each type are homozygous at all loci. Under this assumption the variation we see within each group is entirely environmental variation and the variation we see between the two groups is mostly (but not entirely) genetic variation. If we then cross an individual from the high group (ABCD) with an individual from the low group (abcd) we would get F1 hybrids (ABCD/abcd) that are intermediate in phenotype. We would notice that each individual is not identical in phenotype even though each is identical in genotype (all F1’s). We would then attribute all the variation in phenotype to an environmental component, VE. If we than crossed all the F1’s with each other, we would get an F2 distribution that would have a wider distribution. Because of independent assortment of chromosomes and recombination in the F1’s each F2 is likely to have a unique multilocus genotype. Thus the total phenotypic variance in the F2 distribution will have both a genetic component, VG and an environmental component (VE). In simple terms, these are related by the expression VP = VG VE. #QuantitativeGenetics #GeneticsFieldOfStudy #phenotypic #homozygous #genotype #geneticVariation #PolygenicInheritance #polygenicInheritanceExample #whatIsPolygenicInheritance #normalDistributionCurve #incompletelyDominantTraits #additiveEffect #genetics #exampleOfPolygenicInheritance #skinColorTrait #skinColorTraitInHumans #skinColorInheritance #heightInhertiance #heightTraitInheritance #polygene #polygeneAndAdditiveEffect
Back to Top