How to model Rotating Elements in CFD (computational fluid dynamics) using MRF, AMI and more

For more information, visit or email info@ ---------------------------------------------------------------------------------------- Rotating Wall Boundary Condition The simplest form is the rotating wall boundary condition. Without rotation, the velocity of the airflow is always zero at the surface because of the no slip condition. The rotating wall boundary condition simply enforces a tangential velocity onto the surface of the rotating object. This velocity is equal to the distance from the center multiplied by the rotational velocity. The further you move away from the center, the higher the velocity. This technique is very simple and doesn’t significantly change the cost of computation, as no extra equations are introduced and the flow can be solved in a steady state manner. It’s very suitable on surfaces that are tangential to the local direction of rotation. At AirShaper, we chose this technique to take the rotating wheels of cars into account, as it’s a very robu
Back to Top