UCI AI/ML Seminar Series
Maja Rudolph
Senior Research Scientist
Bosch Center for AI
Modeling Irregular Time Series with Continuous Recurrent Units
Recurrent neural networks (RNNs) are a popular choice for modeling sequential data. Standard RNNs assume constant time-intervals between observations. However, in many datasets (e.g. medical records) observation times are irregular and can carry important information. To address this challenge, we propose continuous recurrent units (CRUs) – a neural architecture that can naturally handle irregular intervals between observations. The CRU assumes a hidden state which evolves according to a linear stochastic differential equation and is integrated into an encoder-decoder framework. The recursive computations of the CRU can be derived using the continuous-discrete Kalman filter and are in closed form. The resulting recurrent architecture has temporal continuity between hidden states and a gating mechanism that
5 views
34
5
3 months ago 01:56:18 4
«Недостатки и распределение рисков в аренде: в поисках баланса интересов сторон» лекция А.Карапетова
5 months ago 01:23:53 1
Прямой эфир «LLM в AI Talent Hub»
6 months ago 00:05:59 1
Куда мы пропадали? Новости, обещания и планы.
7 months ago 00:00:00 1
Человеко-машинный разум для проектирования и производства микросхем - Виктор Артюхов — Семинар AGI
10 months ago 01:06:13 1
Limitations of Stochastic Selection with Pairwise Independent Priors
10 months ago 01:00:50 1
[I’ML] ML System Design
1 year ago 01:55:29 50
FractalGPT - Захар Понимаш — Семинар AGI
1 year ago 00:28:41 1
Прикладное машинное обучение. Семинар 5. BERT.
1 year ago 00:49:05 1
High-Dimensional Prediction for Sequential Decision Making