Why AI is Harder Than We Think (Machine Learning Research Paper Explained)

#aiwinter #agi #embodiedcognition The AI community has gone through regular cycles of AI Springs, where rapid progress gave rise to massive overconfidence, high funding, and overpromise, followed by these promises being unfulfilled, subsequently diving into periods of disenfranchisement and underfunding, called AI Winters. This paper examines the reasons for the repeated periods of overconfidence and identifies four fallacies that people make when they see rapid progress in AI. OUTLINE: 0:00 - Intro & Overview 2:10 - AI Springs & AI Winters 5:40 - Is the current AI boom overhyped? 15:35 - Fallacy 1: Narrow Intelligence vs General Intelligence 19:40 - Fallacy 2: Hard for humans doesn’t mean hard for computers 21:45 - Fallacy 3: How we call things matters 28:15 - Fallacy 4: Embodied Cognition 35:30 - Conclusion & Comments Paper: My Video on Shortcut Learning: Abstract: Sinc
Back to Top