Semi-supervised learning with generative adversarial networks.
Semi-supervised refers to the training process where the model gets trained only on a few labeled images but the data set contains a lot more unlabeled images. This can be useful in situations where you have a humongous data set but only partially labeled.
In regular GAN the discriminator is trained in an unsupervised manner, where it predicts whether the image is real or fake (binary classification). In SGAN, in addition to unsupervised, the discriminator gets trained in a supervised manner on class labels for real images (multiclass classification).
In essence, the unsupervised mode trains the discriminator to learn features and the supervised mode trains on corresponding classes (labels). The GAN
can be trained using only a handful of labeled examples.
In a standard GAN our focus is on training a generator that we want to use to generate fake images. In SGAN, our goal is to train the discriminator to be an excellent classifier using onl
2 views
10
4
1 month ago 00:04:59 1
Video từ Yuri Mayuskin
1 month ago 00:02:01 32
Video từ Alexander Glađtrenco
1 month ago 00:00:05 20
Video từ Yuliya Guliđova
1 month ago 00:02:40 4
Video từ Makxim Agutin
1 month ago 00:24:29 14
Gintama-258
1 month ago 00:00:43 5
Video từ Mishael Durmanenko
1 month ago 00:00:23 7
Clip @everyday_pp
1 month ago 00:00:34 352
Video từ Самара, Место в котором я живу
1 month ago 00:00:07 78
Video từ Lyuđmila Fixencova
1 month ago 00:03:54 187
Video từ [Константин Горбунов] Монстры Маркетинга
1 month ago 00:00:42 15
Video từ Современный модуль( Бытовки- продажа, аренда )
1 month ago 00:00:18 12
Video từ Parfyumeriya Ufa-Carmaxcalư
1 month ago 00:08:48 4.1K
STALKER 2 vs METRO EXODUS
1 month ago 00:20:46 1
Обзор на новую линейку электрокотлов ZOTA c контроллером X-Line. Часть 3. Меню сервисного инженера.